

PHY-251: UNIVERSITY PHYSICS I COURSE SYLLABUS – FALL 2023

Instructor: Matthew Cochran

Email Address: matthew.cochran@chaminade.edu

Office: Henry Hall Office 123A

Office Phone: 739-7403

Course Time: Monday, Wednesday, and Friday from 8:30 to 9:20. Thursday 1:00 to 1:50

Monday, Wednesday, and Friday from 9:30 to 10:20. Thursday 5:30 to 6:20.

Prerequisites: MA-210. Concurrent enrollment in PHY-251L is assumed.

Text: Mastering Physics. See Canvas for more information.

Other Materials: Scientific calculator

COURSE DESCRIPTION:

This course is the first part of a year-long introductory physics sequence focusing on the application of physical principles, logical reasoning, and mathematical analysis needed to understand a broad range of natural phenomena. Topics include classical mechanics, fluid dynamics, and thermodynamics.

EVALUATIONS AND GRADING SCALE:

Exam	1.								 					2	0%
Exam	2.								 					2	0%
Exam	3.								 					2	0%
Home															
Final									 					2	0%
90%	_	100) %												A
80%	_	90%	6 .												В
70%															
60%	_	70%	΄ ο.												D
0%	_	60%	6.	 											F

Incomplete grades (I) will be given in accordance with college regulations as outlined in the college catalog. Withdrawals (W) from the class are the responsibility of the student and deadlines are set by the college.

EXAMS:

There will be four examinations as part of the requirements for the course. The exams will be, by necessity, cumulative. Physics is sequential and its concepts must be learned in order. Material for exams will be drawn primarily from homework problems. Hence, the best way to review for an exam is to review homework assignments.

Make-up exams will only be given under extenuating circumstances beyond the student's control. Persons missing an exam due to illness or injury must present a doctor's certificate. Make-up exams must be completed within one week of the scheduled exam date or on the day the student returns to school (whichever comes first). Scheduling is the responsibility of the student.

HOMEWORK:

To be successful in this course, it is essential that you complete all homework assignments. Be prepared to spend three hours or more on homework every week. If you are having trouble, get help from the instructor or your classmates. Do not fall behind. Homework is due at the beginning of class. Late homework is not accepted.

ATTENDANCE:

Regular attendance is expected of all students. Read material prior to lecture. If a topic is still not clear after it has been discussed in class, ask questions. Time will be spent working through homework problems and reviewing for exams in addition to lecturing. You will work with partners in class. It is important that partners engage in discussion of their work and avoid working as isolated individuals.

COURSE LEARNING OUTCOMES:

Upon successful completion of the course, students will demonstrate:

- 1. The ability to apply quantitative reasoning and appropriate mathematics to describe or explain phenomena in the natural world.
- 2. The ability to interpret multiple scientific representations (e.g., verbal descriptions, diagrams, graphs, and formulas) and translate between them.
- 3. An understanding of mechanics (e.g., translational motion, forces and equilibrium, work, energy, and momentum).
- 4. An understanding of the principles of thermodynamics and fluids.
- 5. The ability to apply physics principles to understand humans, living systems, and scientific instrumentation.

PROGRAM LEARNING OUTCOMES

Students completing a minor in physics will be able to:

- 1. Apply quantitative reasoning and appropriate mathematics to describe phenomena in the natural world.
- 2. Interpret multiple scientific representations, including verbal descriptions, diagrams, graphs, formulas, and translate between them.
- 3. Apply physics principles to understand living systems, scientific instrumentation, and everyday experiences.

MARIANIST VALUES:

The Natural Sciences Division provides an *integral*, *quality education*: sophisticated integrative course content taught by experienced, dedicated, and well-educated instructors.

- We *educate in family spirit* every classroom is an Ohana and you can expect to be respected yet challenged in an environment that is supportive, inclusively by instructors who take the time to personally get to know and care for you.
- We educate for service, justice and peace, since many of the most pressing global issues (climate change, health inequity, poverty, justice) are those which science and technology investigate, establish ethical parameters for, and offer solutions to.
- We *educate for adaptation and change*. In science and technology, the only constant is change. Data, techniques, technologies, questions, interpretations and ethical landscapes are constantly evolving, and we teach students to thrive on this dynamic uncertainty.

The study of science and technology can be formative, exploring human creativity and potential in the development of technologies and scientific solutions, the opportunity to engage in the stewardship of the natural world, and the opportunity to promote social justice. We provide opportunities to engage with the problems that face Hawai'i and the Pacific region through the Natural Sciences curriculum, in particular, those centered around severe challenges in health, poverty, environmental resilience, and erosion of traditional culture. The Marianist Educational Values relate to Native Hawaiian ideas of mana, na'auao, ohana, aloha and aina. We intend for our Natural Sciences programs to be culturally-sustaining, rooted in our Hawaiian place, and centered on core values of Maiau, be neat, prepared, careful in all we do; Makawalu, demonstrate foresight and planning; 'Ai, sustain mind and body; Pa'a Na'au, learn deeply.

TITLE IX COMPLIANCE:

Chaminade University of Honolulu recognizes the inherent dignity of all individuals and promotes respect for all people. Sexual misconduct, physical and/or psychological abuse will NOT be tolerated at CUH. If you have been the victim of sexual misconduct, physical and/or psychological abuse, we encourage you to report this matter promptly. As a faculty member, I am interested in promoting a safe and healthy environment, and should I learn of any sexual misconduct, physical and/or psychological abuse, I must report the matter to the Title IX Coordinator. If you or someone you know has been harassed or assaulted, you can find the appropriate resources by visiting Campus Ministry, the Dean of Students Office, the Counseling Center, or the Office for Compliance and Personnel Services.

CREDIT HOUR POLICY:

The unit of semester credit is defined as university-level credit that is awarded for the completion of coursework. One credit hour reflects the amount of work represented in the intended learning outcomes and verified by evidence of student achievement for those learning outcomes. Each credit hour earned at Chaminade University should result in 45 hours of engagement. This equates to one hour of classroom or direct faculty instruction and a minimum of two hours of out-of-class student work each week for approximately fifteen weeks for one semester, 10 week term, or equivalent amount of work over a different amount of time. Direct instructor engagement and out-of-class work result in total student engagement time of 45 hours for one credit.

The minimum 45 hours of engagement per credit hour can be satisfied in fully online, internship, or other specialized courses through several means, including (a) regular online instruction or interaction with the faculty member and fellow students and (b) academic engagement through extensive reading, research, online discussion, online quizzes or exams; instruction, collaborative group work, internships, laboratory work, practica, studio work, and preparation of papers, presentations, or other forms of assessment. This policy is in accordance with federal regulations and regional accrediting agencies.

PHY-251

Weekly: $3.5 \text{ hours seat} \times 15 \text{ weeks} = 52.5 \text{ hours}$

1.5 hours reading \times 15 weeks = 22.5 hours

 $5.0 \text{ hours homework} \times 15 \text{ weeks} = 75.0 \text{ hours}$

Midterms: 7.0 hours study \times 3 midterms = 21.0 hours Final: 2.0 hours seat + 7 hours study = 9.0 hours

DISABILITY ACCESS:

If you need individual accommodations to meet course outcomes because of a documented disability, please speak with me to discuss your needs as soon as possible so that we can ensure your full participation in class and fair assessment of your work. Students with special needs who meet criteria for the Americans with Disabilities Act (ADA) provisions must provide written documentation of the need for accommodations from the Counseling Center by the end of week three of the class, in order for instructors to plan accordingly. If a student would like to determine if they meet the criteria for accommodations, they should contact the Counseling Center at (808) 735-4845 for further information (counselingcenter@chaminade.edu).

MUSIC DEVICES AND MOBILE PHONES:

Unless specifically permitted by your instructor, use of music devices and mobile phones is prohibited during all Natural Science and Mathematics classes at Chaminade, as it is discourteous and may lead to suspicion of academic misconduct. Students unable to comply will be asked to leave class.

WEEKLY SCHEDULE:

Week	Date	L#	Topic	Reading		
	Aug 21	1	Course intro			
1	Aug 23	2	Motion diagrams	1.1 to 1.4		
1	Aug 24	3	Position; Velocity	1.1 to 1.4		
	Aug 25	4	Acceleration; Units	1.5 to 1.8		
	Aug 28	5	Velocity in 1D	2.1 to 2.3		
2 Aug 30 Aug 31		6	Acceleration in 1D	2.4		
		7	Free fall; Inclined plane	2.5 & 2.6		
	Sep 01	8	Vectors; Trig review	3.1 to 3.4		
	Sep 04	H1	Labor Day – No Class			
•	Sep 06	9	Vectors; Trig review	3.1 to 3.4		
3	Sep 07	10	Motion in two dimensions	4.1		
	Sep 08	11	Projectile motion	4.2		
	Sep 11	12	Circular motion	4.4 & 4.5		
4	Sep 13	13	Forces and Newton's laws	5.1 to 5.6		
	Sep 14	14	Review			
	Sep 15	E1	EXAM 1			
	Sep 18	15	Free body diagrams	5.7		
5	Sep 20	16	Statics	6.1		
	Sep 21	17	Mass and weight	6.2 & 6.3		
	Sep 22	18	Friction and drag	6.4 & 6.5		
	Sep 25	19	Second law examples	6.6		
6	Sep 27	20	Newton's third law	7.1 to 7.3		
0	Sep 28	21	Ropes and Pulleys	7.4		
	Sep 29	22	Dynamics in two dimensions	8.1 & 8.2		
	Oct 02	23	Energy; Work	9.1 to 9.3		
7	Oct 04	24	Work done by a spring	9.4		
,	Oct 05	25	Thermal energy; Power	9.5 & 9.6		
	Oct 06	26	Potential energy	10.1 to 10.3		
	Oct 09	Н2	Indigenous Peoples' Day – No Class			
8	Oct 11	27	Conservation of energy	10.4 & 10.5		
O	Oct 12	28	Review			
	Oct 13	E2	EXAM 2			

WEEKLY SCHEDULE:

Week	Date	L#	Торіс	Reading
	Oct 16	29	Impulse and momentum	11.1
9	Oct 18	30	Conservation of momentum	11.2 to 11.4
9	Oct 19	31	Explosions; Momentum in 2D	11.5
	Oct 20	32	Torque	12.5
	Oct 23	33	Torque and statics	12.8
10 Oct 2	Oct 25	34	Fluids; Pressure	14.1 & 14.2
Oct 26		35	Measuring pressure	14.3
	Oct 27	36	Buoyancy	14.4
	Oct 30	37	Dynamics in two dimensions	14.5
11 Nov 0		38	Moles	18.1 to 18.3
1.1	Nov 02	39	Temperature	18.1 to 18.3
	Nov 03	40	Ideal gasses	18.6
	Nov 06	41	Ideal gas processes	18.7
12	Nov 08	42	Energy and gasses	19.1
	Nov 09	43	Work and gasses	19.2
	Nov 10	Н3	Veteran's Day – No Class	
	Nov 13	E3	EXAM 3	
13	Nov 15	44	Heat and the First Law of Thermodynamics	19.3 & 19.4
13	Nov 16	45	Thermal properties of matter	19.5
	Nov 17	46	Calorimetry	19.6
14	Nov 20	47	Specific heat of gasses	19.7
	Nov 22	48	Molecular speed and collisions	20.1 & 20.2
14	Nov 23	H4	Thanksgiving Recess – No Class	
	Nov 24	П4	I hanksgiving Recess – No Class	
	Nov 27	49	Pressure in a gas	20.3
15	Nov 29	50	Temperature	20.4
13	Nov 30	51	Thermal energy and specific heat	20.5
	Dec 01	52	Review	
Finals	Wed	FE	FINAL 8:30 – 10:30 (for 8:30 section)	
Finals	Thu	FE	FINAL 11:00 – 1:00 (for 9:30 section)	