
of 5

ourse~escription

Introduction to Object-Oriented programming using the C++ programming language, with examples drawn
from business and other applications. Students should be acquainted with basic programming concepts,
such as data types, variables, decision structures, and loop structures. Various aspects of the C++ syntax
will be introduced throughout the course. Prerequisite: CIS 150 or equivalent

Course Objectives

The objectives of this course include the following:

t To continue studying the basic concepts and techniques of programming NpnQ l N
• To study algorithms to manipulate strings, dates, and other predefined and user-defined classes
• To introduce the concepts and techniques of Object-Oriented programming, using business-related

and other familiar applications
• To introduce the C++ programming language as a vehicle for implementing algorithms and for

developing Object-Oriented programs

Return to: [Top of Page]

Text Book

Computing Concepts with C++ Essentials by Cay Horstmann, Wiley, 1997

Return to: [Top of Pasel

Course Requirements

The following is a summary of what is expected of you for the
further details.

• Class Attendance
• Readings and Exercises
• Project Assignments
• Lab Exercises
• Tests
• Final Exam

course. Refer to the section on Grading for

Class attendance is important, since the main points of the course will be highlighted and details will be
demonstrated in the class. Generally, a lab session requires that you complete and submit a lab exercise.
Readings will show you background and further explanations on the concepts and techniques covered in
the class. Exercises will help you to reinforce key ideas covered in the class and to prepare you for tests.
(Many of the test questions will be based on such Exercise questions). Since you learn by doing, Project
Assignments and Lab Exercises will be the most important elements among your responsibilities in the
course.

1/28/99 2:45 PM

Project Assignments

Six programming projects are scheduled for the term (in addition to 11 Lab Exercises). Since learning the
basics or programming in C++ is a major objective of the course, these projects are considered an
indispensable part of the class. Each project is assigned points (maximum = 30 pts) according to its
completeness, style, and timeliness. Refer to separate paragraphs for the project grading criteria .
Programming assignments are available several weeks in advance of the due dates.

All programming assignments which are late by 1 to 7 calendar days will incur a penalty of 30% (i.e., 21
pts max, instead of 30). Assignments which are later than 7 days will receive a maximum of 30%. An
assignment which is turned in after the start of the class on the due date is considered one day late. If you
foresee a valid reason that could cause you to hand in your assignments late--e.g., TDY, special
assignment, etc.--you must get permission for special arrangements before the programming assignment is
due.

Be conscientious in completing your assignments, since they are indispensable to learning programming
fundamentals. Do not hesitate to seek help when you get stuck. When you are seeking help in debugging
your programs, always accompany your questions with a hardcopy of your program listing or a copy of
your algorithm written in pseudocode.

We will try the following procedure for submitting project assignments.

L

1. Hand in a hardcopy of the source code at the start of the class on the due date.
2. Submit an executable file as attachment to an e-mail (to be sent to: rmaruyam@chaminde.ed u).

The e-mail's time stamp will be used to determine the timeliness of an assignment submission.

Return to: rTop of Pagel

s

Certain class times will be used as lab sessions. A lab exercise, which is designed to illustrate selected
points covered in the class, should be completed and submited after each lab session. Lab exercises will be
availabe well before they are due. You should come prepared for each lab so that you are familiar with the
context and the objectives of each exercise. Lab exercises which are not completed within the class time
must be completed outside the class and handed in by the due date.

Return to: _[Top of Pagel

Tests

There will be three tests and one final exam. Refer to the Class Calendar for their dates. When you foresee
that you will not be able to make these dates for legitimate reasons, make prior arrangements with the
instructor. There will be no make up test for unexcused absences.

Return to: [Top of Pagel

1/28/99 2-45 PM

mailto:rmaruyam@chaminde.edu
mailto:rmaruyam@chaminde.edu

Grading Guidelines

The determination of the final course grades will be guided by the following distribution of course
elements.

The following guidelines will be used in determining the final grades.

A: = 90% B: = 80% C: = 70% D: = 60% F: < 60%

* A minimum of 7 completed projects is a necessary condition for a passing grade.

Return to: [Ton of Pagel

Project Grading Criteria

Your programming projects will be evaluated according to the following criteria:

1. Accuracy -- does the program perform as it was intended?
Completeness -- does the program satisfy all the requirements stated in the original problem?

2. Programming Style -- does it follow the style guidelines recommended for this class? Refer to the

Programming Sty18 Odelineg for a list of common points to romemberl
3. On Schedule -- was the project submitted on time?

Although you are encouraged to seek help from your TA and the instructor or discuss solutions with your
classmates, the code you submit must be the result of your own work. Chaminade University General
Catalog defines plagiarism as "the offering of work of another as one's own." (p. 51) Copying the work of
others is considered a serious breach of contract in this class. Please read the section titled Class Policies
regarding the penalties for plagiarism.

Return to: [Top of Pagel

Programming Guidelines

1/28/99 2:45 PM

Lab Exercises (20 x 11) 220 pts
Programming

(30 x 6) 180 pts
Projects
Tests (60 x 3) 180 pts
Final Exam 140 pts

Total 720 pts

In a class like this, where you are learning the fundamentals of programming, you must do your
programming work by yourself. Generally speaking, however, software development is a group activity,
where each member of a development team must be able to communicate with others at all levels. Your
programs will be more readable and understandable, both to you and to others (and to your grader, in this
case), if the code is organized and written in a uniform manner. Although standards for programming styles
and conventions can sometimes seem subjective, a certain degree of discipline and uniformity is necessary
in any software development activity. Your source code should follow a certain style, such as documenting
comments, use of upper and lowercases for identifiers, indentation with control structures, blank space
between symbols, and blank lines between statements. The following is a highlight of some of the common
points. Read the section in your textbook on Programming Style Guidelines (p 587f) for a more complete
description of style conventions we will be using in this class.

a. Tabs are set every 3 spaces.
b. Variables and function names begin in lowercase.
c. In general, each declaration occupies one line.
d. There are spaces after keywords and between binary operators (e.g., c = a + b; not c=a+b;).
e. Braces must line up.
f. Indent the body of a decision structure or a loop structure.
g. No "magic numbers" should appear in your program.
h. Vertical spacing--insert a blank before and after a loop structure or a decision structure. Separate

major sections in the program--e.g., input section, process section, output section--with a blank line.
i. Comments should help the programmer. Avoid commenting too much or commenting too little.

Major code sections in a program deserve explanations.
j. In general, global variables should be avoided.
k. Every program should begin with documenting comments. See handouts for examples.

Peturn to: To ofPage]

Submitting One's Own Work

Each student is expected to write his or her own programs. Although modern programming practices
require extensive teamwork, one of the main goals in this class is that each student learns the basic
programming skills by individual practice. You must distinguish between consulting your friends and
discussing problems with them from copying other people's work. The penalty for copying someone else's
program or parts thereof is a grade of F for all parties involved for the first offense; and an F in the course
for the second offense.

Return to: [Top of Page]

Attendance

Regular class attendance is important, since you are responsible for all topics covered in the class. It is
especially important for this course because of the density of the course content. (One class is 10% of the
course.) Please make sure that you have someone from whom you can obtain notes, in case you miss a
class. Generally speaking, there will be no make-up tests. When there are legitimate reasons for not
meeting scheduled test or assignment dates, arrangement must be made before those scheduled dates.

All students are expected to attend the lab portion of the course. Although the lab times will be designed
primarily for individual work, intstructions on general interest will be presented during the lab from time to
time.

Return to: [Top of Pagel

Last updated on 1/11/99. Please send comments or questions to rmaruyamachaminade.edu

1/28/99 2:45 PM

http://rmaruyamachaminade.edu
http://rmaruyamachaminade.edu

Class Schedule
Spring Semester, 1998-99

1/28/99 2:47 PM

1/11 1. Introduction 1-30 R1.3, R1.12, R1.16

* Programming concepts
1/13 * IDE

1 1

-11-/15 `* Program Structure Lab

2 1/18 Fr. Chaminade/Martin Luther King Day (No Classes)

37-53 R2.6, R2.7 -1/20 2. Data Types R2.1, _F_
* Numeric types

_-1/22 * UO statements PA 1

F

* Arithmetic Expressions

(' 1/25 * Strings 66-73 -R2.8, R2.9, 82.11, F
82.13, R2.16, 82.17 ~ Lab 21/27 3. Objects & Classes

1/29 * OOP Concepts F_F_
2/1 * Class string 90-99 - R3.1, R3.3, R3.7, I _'

* Class Time R3.9
2/3 F_F_* Class Employee

2/5 ' PA 2

5 2/8 Test No. 1

2/10 4. Decision Structures 128-144 R4.1, R4.2, R4.5, Lab 3

* Pseudocode 154-162 R4.6, R4.7, R4.10
* If-Then-Else
* Relational Operators
* Multiple Ifs

2/12 * Nested If
* Logical expressions
* Truth Table
* DeMorgan's Rule
* Boolean Expressions-6 F-2/15 President's Day (No classes)

2/17 5. Functions 174-189 R5.1, R5.2, R5.6 Lab 4

12/19
* Built-in functions
* User-defined functions PA::3-- F-

2/22 * Parameters 189-195 R5.8, R5.9, R5.10 I F_
* Procedures R5.13, R5.18, R5.20,

- Lab 5 . ,..
...2 24 *Reference Parameters R5.21

2/26 * Top- down Design

8 3/1 6. Iteration Structures 232-240 R6.2, R6.3, R6.6,
* While Loop 248-252 R6.11, R6.12, R6.20

* For Loop 262-270
3/3 * Common Loop Patterns F* Trace Table

3/5 Test No. 2

9 3/8 * Nested Loops
Classes

322-335
338-343

R8.2, R8.4, R8.5,
R8.8, R8.12, R8.13, _F_

3/10
* Terminology

Lab 6* Encapsulation F* Interface

3/12 * Member Function PA 4
* Constructors
* Using Classes

10 3/15 Arrays Array R9.1, R9.3, R9.5,

*
Read in R9.8, R9.12

-Declaring Arrays ¢s
Lab 73/17 * Array Parameters

12

(3/19 I * Algorithms Involving Arrays

3/22 I Spring Recess (No classes)

3/26

3/29

3/31

* Array of Objects
Files
* Introduction to Files
* Standard I/O
*File Operations

4/2

	

Good Friday (No classes)

428-429 R10.1, R10.2, R10.7,
R10.8

Lab 8

13 4/5 * File Operations 452-457 R11.1, R11.2, R11.3, PA S
* Examples

4/7 Test No. 3 -' Lab 9

4/9 Modules R11.6, R11.9, R11.10,'
* Divide and Conquer R11.12
* Header Files

14 4/12 * Implementation Module
* Examples

4/14

1 0
4/16 I-F

15 4/19 Sorting 491-496
Searching

Lab[4/21 List Class 11

4/23

16 4/26 Recursion 210-213

4/28 PA 6

4/30

17 5/4 Final Exam: 10:30 -12:30

Wk Date

1

	

I 1/11

1/13

1/15

Class Schedule
Spring Semester, 1998-99

Notes

	

Text Book

	

Exercises

1. Introduction

	

: 1-30

	

~ k1.3, R1.12, R1.16
* Programming concepts
* IDE
* Program Structure

1/18 Fr. Chaminade/Martin Luther King Day (No Classes)

of 2

	

1/28/99 2:51 PM

1/20 2. Data Types 37-53 R2.1, R2.6, R2.7 1-7* Numeric types

1/22 * 1/O statements
PA 1* Arithmetic Expressions

3 1/25 * Strings -', 66-73 R2.8, R2.9, R2.11,

1/2?
R2.13, R2.16, 82.17

Lab 23. Objects & Classes
1/29 * OOP Concepts

---2/1 * Class string 90-99 - R3.1, -R3.3, R3.7, F_F_
* Class Time R3.9

2/3 * Class Employee
2/5 PA 2 L

2/8 Test No. 1

2/10 4. Decision Structures 128-144 R4.1, R4.2, R4.5, Lab 3
* Pseudocode 154-162 R4.6, R4.7, R4.10
* If-Then-Else
* Relational Operators
* Multiple Ifs

2/12 * Nested If
* Logical expressions
* Truth Table
* DeMorgan's Rule
* Boolean Expressions

2/15 President's Day (No classes)

2/17 -5. Functions 174-189 R5.1, R5.2, R5.6 Lab 4
* Built-in functions

2/19 * User-defined functions [&C3

72/22 ` R5.102/22 * Parameters 189-195 R5.8, R5.9,
*

2/24
Procedures

* Reference Parameters
R5.13, R5.18, 85.20,
R5.21 ~~ Lab 5

2/26 * Top-down Design F_F_
3/1 6. Iteration Structures ~' 232-240 R6.2, R63, R6.6,

* While Loop 248-252 R6.11, R6.12, R6 .20
* 262-270

3/37 For Loop
* Common Loop Patterns F* Trace Table

3/5 Test No. 2

3/8 * Nested Loops 322-335 R8.2, R8.4, R8.5,
Classes 338-343 R8.8, R8.12, R8.13,
* R8.14Terminology

3/10 * Encapsulation Lab 6
* Interface

3/12 * Member Function PA 44* Constructors F* Using Classes

10 3/15 Arrays Array R9.1, R9.3, R9.5, F_F_
3/17 * Declaring Arrays Readings R9.8, R9.12

Lab 7* Array Parameters

3/19 1 * Algorithms Involving Arrays

17

	

5/4

	

Final Exam: 10:30 -12:30

1/28/99 2:51 PM

11 3/22 Spring Recess (No classes)

3/26

12 3/29 * Array of Objects 428-429 ` R10.1, R10.2, R10.7,
Files R10.8 F* Introduction to Files

3/31 * Standard I/O Lab 8
*File Operations

4/2 Good Friday (No classes)

13 4/5 File erations 452-457 RI 1.1 R11.2 R11.3, P_A 5
* Exampes

4/7 Test No. 3 F Lab9__ _

4/9 Modules R11.6, R11.9, R11.10,
* Divide and Conquer R11.12
* Header Files

14 4112 * Implementation M94VIY

*4/14
Examples

~'

_Lab

10

4/16 F
15 4/19 Sorting 491-496 I

Searching
Lab

4/21 List Class ~, 11

4/23

16 4/26 Recursion 210-213

4/28 PA 6

4/30

