ORGANIC CHEMISTRY II (CH 324) COURSE OUTLINE SPRING SEMESTER 2000

Pry
·' /

.

Bülent Terem

Required Textbook:	Brown, W.H. Organic	Chemistry, Saunders College Publishing, 1995.				
Supplementary Books:						
		on, S.A. <i>Student Guide and Problems Bookfor Organic</i> <i>H. Brown, Vol.</i> 1 and Vol. 2, Saunders College Publishing,				
	Bruice, P.Y. Organic C	hemistry, Prentice-Hall, Inc., 1995.				
Software:	ChemDraw (for Windows); Chem 3-D, Cambridge Soft Corp.					
Supplementary Materials:						
	Molecular Models					
Exams and Grading:	Three 70-minute midterms, quizzes and homework assignments, and a ninety minute comprehensive final.					
	Course Grade (all grades in percentages)					
	_ +.26 (average of the three midterms)					
	 + .26 (average of the two highest midterms) + .10 (average of the quizzes and assignments) +38 (final) 					
Office Hours:	TR 12:30 - 1:00 and/or by arrangement					
Review Sessions:	Saturday mornings					
Office:	Henry Hall 45 e-mail:	(Ph: 735-4806) terem@gold.chem.hawaii.edu				

General Comments:

During Chem 323 the focus was on understanding the basic concepts of organic reaction mechanisms. With a sound grasp of introductory principles, it will be much easier, and more fulfilling, to follow the rationale of the second semester's organic chemistry course. In the next fifteen weeks we will start with topics in physical organic chemistry and gradually move into biological organic chemistry. The chemistry of aromatic compounds will provide a framework where structure-reactivity relationships are clearly laid out. An introduction to spectroscopic techniques will show how physical methods can illustrate the properties of organic compounds. As we go into the chemistry of carbonyl compounds, and **Sample** in-depth analyses of certain reactions, comparisons with biological pathways will stand out. Meanwhile, multi-step syntheses will **elucidate common** logical strategies. Finally, the chemistry of carbohydrates, amino acids and proteins will give the course a biological flavor.

As far as study habits are concerned, any effort to understand the material as it is presented, or shortly after, is the key to success in this course. Overlaps between lab and lecture, as well as review sessions, are designed to emphasize this point. A "diligent" student is also expected to attempt most of the problems in the relevant sections of the textbook. It is hoped that at the end of the spring semester, each student will possess a sound molecular background to help him/her interpret what goes on in biological systems.

1	1/18	15	A review of organic reactions Benzene derivatives and aromatic compounds The <u>concept</u> of aromatici
1	1/20	15	Annulenes Heterocyclic aromatic compounds Aromatic ions Fused ring aromatic compounds Phenols Side chain reactions of aromatic compounds
2	1/25	16	General mechanism of electrophilic aromatic substitution reactions Halogenation; Nitration; Sulfonation Mass <u>spectrometry</u> of benzene derivatives
2	1/27	16	Friedel Craft's alkylation and acylation reactions Substituent effects in electro hilic aromatic substitution
3	2/1	16	Substituent effects in electro hilic aromatic substitution cont
3	2/3	12	A general look into spectroscopy: an organic chemist's perspective Mass spectrometry Instrumental features Analysis of mass spectra: Resolution; Isotopes; Molecular ion peaks Fragmentation in mass spectrometry Stable
			fragment Rearrangements Structure determination using mass spectral data
4	2/8		FIRST MIDTERM EXAM
4	2/10	13	Nuclear Magnetic Resonance (NMR) Spectroscopy: The origin of NMR absorptions; 'H NMR
5	2/15	13	Equivalence in NMR Spectroscopy Integration Chemical shifts
5	2/17	13	Sin-sin coupling C NMR interpretation of NMR spectra
6	2/22	13	Magnetic induction in a π -system NMR Spectroscopy of benzene derivatives 15.4B Structure determination using spectroscopic data
6	2/24	17	Aldehydes and ketones: Classification and their spectroscopic properties <u>Preparation</u>
7	2/29	17	Addition of nucleophiles to aldehydes and ketones: General mechanism (acid and base catalyzed) Carbon nucleophiles: Grignard reagents; Organolithium reagents; Ace lides; Cyanide
7	3/2	17	The Wittig Reaction Oxygen Nucleophiles: Hydrates; Acetals Acetals as rotectin ou s Thioacetals 1,3-dithiane anions
8	3/7	17	Nitrogen nucleophiles Oxidation of aldehydes and ketones Baeyer-Villiger oxidation Reduction of aldeh des and ketones
8	3/9	17	Keto-enol tautomerism Reactions at the a-carbon: Racemization; H-D exchange; Aldol Reaction
9	3/14		SECOND MIDTERM EXAM

			Carbohydrates: Structural classifications; hemiacetal formation (cyclization) of
			monosaccharides Conformations of monosaccharides Reactions of
			monosaccharides: oxidation; reduction; acetal formation N-glycosides:
			Nucleosides, nucleotides; linkages in nucleic acids (25.1-25.2)
10	I 3/21	18	Fischer's roof of glucose structure Disaccharides
10	1 3/23	18	Biologically active carbohydrates Polysaccharides
		19	Carboxylic acids: Structural features; Effects of substituents on acidity
11	3/27		SPRING BREAK
	-3/31		
12	4/4	19	Preparation of carboxylic acids: Hydrolysis of nitriles; Carbonation of Grignard
			reagents; Oxidation reactions
12	4/6	19	Reactions of carboxylic acids: Reduction; Esterification; Thermal decarboxylation of
			β-ketoacids
		20	Carboxylic acid functional derivatives: Esters, Amides, Anhydrides, Acid halides,
			Nitrites
13	4/11	20	Reactions of carboxylic acid derivatives: Mechanism of nucleophilic acyl
			substitution Hydrolysis Comparison of the reactivities of carboxylic acid
			derivatives Interconversion of <u>carboxylic</u> acid derivatives
13	4/13	20	The Hofmann Rearrangement Condensation of Esters: Claisen Condensation;
			Hydrolysis and decarboxylation of β -ketoesters Carboxylic acid derivatives of
			hiological interest Sulfonamides
14	4/18	21	Enolate anions: directed aldol reactions Acetoacetic and malonic ester syntheses
			a, -unsaturated aldeh des and ketones The Michael reaction
14	4/20	21	Enamine reactions Robinson Annulation Reaction Review
15	4/25		THIRD MIDTERM EXAM
15	4/27	22	Amines: Nomenclature; structure and bonding; basicity Syntheses of amines:
			Gabriel Synthesis; Reductive routes; Hofmann (and Curtius) Rearrangements
			Reactions of amines: Hinsber Test; Hofmann Elimination
16	5/2	22	famines: Nitrosation reactions diazonium salts: Sandme er reactions
16	5/4	24	Amino acids: Structural-stereochemical features; acid-base properties Peptides and
			proteins Peptide structure determination: End group analyses; partial hydrolyses
			S nthetic strategies in peptide syntheses
	5110		FINAL EXAM (Wednesday; 08:00